
189

Data Access in .NET
An’ home again, the Rio run: it’s no child’s play to go

Steamin’ to bell for fourteen days o’ snow an’ floe an’ blow—

The bergs like kelpies overside that girn an’ turn an’ shift

Whaur, grindin’ like the Mills o’ God, goes by the big South drift.

(Hail, snow an’ ice that praise the lord: I’ve met them at their work,

An’ wished we had anither route or they anither kirk.)

—Rudyard Kipling, writing on the perils of

data access, “McAndrew’s Hymn,” 1894.

Problem Background
All Internet applications
access remote data
stores.

Unlike single desktop programs, which usually deal with documents on a
user’s local hard disk, essentially all distributed programs access remote data
stores in some way. Remote data access is the main engine driving the phe-
nomenal growth of the Internet—the incredible potential of easy access to
data from anyone who wants to make it available. Sometimes the owner of
that data charges money for the data itself. Pornographers were the first who
made this business model really sing, as few users would fork over the bucks
for any other type of content. Other businesses, such as the Wall Street Jour-
nal (porn for a different audience, some say) and the Oxford English Dictio-
nary, are enjoying limited success with this model today, and mainstream
music companies may eventually figure it out if they ever get their heads
screwed on right. More often today, the owner of the data makes money by
using the Internet’s easy access to that data to lower the friction of existing

C06619182.fm Page 189 Thursday, March 6, 2003 2:53 PM

190 Introducing Microsoft .NET, Third Edition

business processes, such as removing human employees from airline reserva-
tion systems or overnight package delivery tracking. Accessing remote data
over the Internet is primarily why you have a PC today.

Data stores live in many
different programs in
many different locations.

Once you realize that the goals of most Internet applications differ rad-
ically from those of desktop programs, you won’t be surprised to learn that
we encounter different design problems when we write Internet apps. (Are
you starting to see a pattern in this book?) First, the data that we want to see
and perhaps change resides in many different locations and many different
types of containers. I purposely selected the term data stores in this chapter’s
opening sentence instead of the more narrow databases. Certainly an enor-
mous amount of data resides in large relational database programs such as
Microsoft SQL Server or Oracle9i, but the data that an Internet app uses can
and often does reside in many other locations. Some of these sources will be
familiar to you, and only the notion of easy remote access will be new. For
example, the financial data for my current house remodeling project lives in
Microsoft Excel spreadsheets and Microsoft Money files on my hard disk. I’d
like my architect and contractor to be able to read these files and update them
with their latest cost overruns, and I’d like my banker to be able to read them
and recoil in shock before handing over the money to cover the costs. Other
data sources are new, and you might not have thought of them as data
sources just a year ago. For example, the April 30, 2001, Wall Street Journal
carried a story about a software product that reports the status of all the
remote substations of an electric power utility company using the Web as a
transport and display mechanism (oooh, baby, that feels SO good).

We want our many
sources of data to look
the same to a client
program.

Naturally, the greater the number of different data sources, the more dif-
ficult becomes the task of writing client applications that access these differ-
ent sources. We can’t take the time to learn different programming models for
every conceivable data store: one for SQL Server, a different one for Oracle,
yet another for Excel—and heaven knows what programmatic interface those
electric power guys are exposing to clients. This problem is especially bad for
small-scale data providers because they don’t have the clout to make clients
learn their proprietary language, as some would argue that Microsoft and
Oracle do. We need to have one basic programming model for accessing all
types of data no matter where the data lives, otherwise we’ll spend all our
development budget dealing with different data access schemes and not have
any resources left for writing any code that does useful work with the data
once we’ve fetched it.

Our data access strategy
needs to work well in the
loosely coupled world of
the Internet.

Internet data access programming is also difficult because of the heter-
ogeneous and nondeterministic nature of the Internet environment. When a
desktop PC accesses a database file on its own hard disk—say, in an applica-
tion for a small dry-cleaning business looking for a missing garment—the

C06619182.fm Page 190 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 191

developer can depend on that access being fast because it uses the PC’s inter-
nal bus. On the Internet, a similar request might have to travel over congested
transmission lines and wait for the attention of overloaded servers. The
request is slower and the speed varies from one access of data to another. A
developer needs to write code to account for these various conditions. In
addition, a data source and its client are coupled much more loosely over the
Internet than they would be if they resided on the same PC. For example, it’s
relatively easy to write code that opens a database connection and keeps it
open for the duration of the work session of the human user. While this might
be reasonable on a single PC, it doesn’t work well over the Internet because
the server probably has (desperately hopes it has) many concurrent users and
the server will buckle under the load of keeping open many simultaneous
connections, even if most of them aren’t doing anything. We want to be able
to access data in a way that can deal with slow and varying response times
and doesn’t tie up server resources for long periods.

We need our data access
strategy to work well with
XML.

XML (eXtensible Markup Language) is quickly emerging as the lingua
franca of the Internet. That Latin term is about 200 years old, and it literally
means “French language,” but figuratively it means “the language everyone
speaks.” Today, we’d probably call XML the English of the Internet. I like to
call XML the tofu of the Internet because it doesn’t have any flavor of its
own—it takes on the flavor of whatever you cook it with—or occasionally the
WD-40 of the Internet, because it drastically lowers the friction of crossing
boundaries. XML makes an excellent wire format for transporting data from
one computer system to another because it’s widely supported and free of
implementation dependencies. Our data access strategy needs to go into and
out of XML easily.

We need our new data
access strategy to keep
working with what’s been
working.

Finally, we need to maintain backward compatibility with existing code
and data. The installed base of data access code is enormous, written and tested
at great expense, and we can’t afford to jettison it. Any new architecture that
doesn’t provide a bridge from the current state of affairs, whatever it is, doesn’t
have much chance in the market, no matter how cool it is on its own.

Solution Architecture
OLE DB provided a single
programmatic interface
for all providers of data.

Microsoft’s first attempt at solving the problem of universal data access from
a single programming model was OLE DB, released around 1995. That’s so
long ago in geek years that COM was still called OLE (a MINFU; see Chapter
4), and the author of the Microsoft Systems Journal article about the technol-
ogy provided a CompuServe number (70313,1455) as a contact address. In
OLE DB, every data provider implemented a standard set of interfaces for

C06619182.fm Page 191 Thursday, March 6, 2003 2:53 PM

192 Introducing Microsoft .NET, Third Edition

allowing external access that required no knowledge by clients of the data
provider’s internal implementation. This process is illustrated in Figure 6-1.

f06tp01Figure 6-1 OLE DB abstracts away the differences between different data
providers.

ADO made OLE DB easy
for programmers to use
but worked well only in a
Microsoft-only environ-
ment.

It was a good idea and a good first try, but OLE DB1 was hard for clients
to program against, particularly in Microsoft Visual Basic. Microsoft next
released ActiveX Data Objects (this was during the brief period when all
things COM were called ActiveX, another MINFU), which Visual Basic pro-
grammers seized with cries of delight because it was so much easier (well,
relatively) for them to program. ADO’s front end provided an easier interface
for clients to program against, and its back end spoke OLE DB to the pro-
vider, as shown in Figure 6-2. ADO worked fairly well on a Microsoft-only
intranet and on the middle tier of a three-tier system accessed by Web clients.
But ADO doesn’t scale well to the open Internet. It uses DCOM to cross

OLE DB standard interfaces

SQL Server

Microsoft Access

Other providers

Client

Uses same code to access
any provider through
standard OLE DB interfaces

1. You can see that as long ago as seven years, Microsoft foresaw the exhaustion of even the 456,976
unique FLAPs (Four-Letter Acronym Packages, FLAP itself is a FLAP, see Chapter 4) and started
experimenting with alternatives. They’ve dusted off the FLEAP (Five Letter Extended Acronym
Package, FLEAP itself is a FLEAP), which has a long and honorable history of military uses. Dwight
David Eisenhower, for example, commanded SHAEF, the Supreme Headquarters Allied Expedition-
ary Force in the Second World War. While the use of FLEAPs hasn’t crossed into the civilian sector,
probably because there hasn’t been any real need for them, 11,881,376 unique FLEAPs exist, so that
ought to hold us for a while. If users balk at another increase in word length, the alternative would
be to combine FLAPs, for example, CLOS, the Common LISP Object System. I call these FIAFs,
which stands for FLAP Inside Another FLAP. And naturally, FIAF itself is a FIAF. When we exhaust
the supply of FLEAPs, we can go to what I call the SLEAPE (pronounced “sleepy”), which stands for
“Six Letter Extended Acronym Package, Eh?” (I coined this one just after a gig in Canada.) There are
roughly 309 million SLEAPEs in a 26 letter alphabet, and the only one I’ve ever seen used is PCM-
CIA (People Can’t Memorize Computer Industry Acronyms).

C06619182.fm Page 192 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 193

machine boundaries, which means that it can’t easily work with non-
Microsoft systems and has trouble getting through firewalls at Microsoft-only
systems. ADO supported a limited amount of disconnected operation, but it
was designed for and worked best in the connected case. It was a good solu-
tion for the problem it aimed at, but programmers’ needs have changed in the
modern Internet world.

f06tp02Figure 6-2 ADO object using OLE DB.

.NET provides data
access via ADO.NET.

Microsoft .NET introduces ADO.NET, Microsoft’s architecture for trans-
ferring the ideas of universal data access and easy programming from the
COM-based world of ADO into the .NET world. ADO.NET is conceptually
similar to ADO in the sense that it is a data abstraction layer that smooths over
differences between data providers and includes prefabricated objects and
functions for easy access to data.

The .NET common lan-
guage runtime provides
objects that access SQL
Server and also any OLE
DB provider.

A data provider that wants to make its data available to .NET clients via
ADO.NET implements a standard set of .NET objects that connect the data
provider to interested clients. These objects are Connection, DataAdapter,
Command, and DataReader. A full description of these objects and their
functionality requires examples, so I discuss them in the next section of this
chapter. The developer of a data source can write his own implementation of
these objects that is optimized for that particular data source, in the same
manner as each data source today provides its own implementation of the
OLE DB objects. Microsoft has provided an implementation of these objects
for SQL Server, and these classes are part of the .NET common language run-
time. In addition, the common language runtime provides an implementation
of these objects that works with any OLE DB provider, so any current data
provider that speaks OLE DB speaks ADO.NET automatically as well, as

Easy-to-use ADO
standard interfaces

Hard-to-use OLE DB
standard interfaces

SQL Server

Microsoft Access

Other providers

ActiveX Data
Objects (ADO)

Client

Uses same code to access
any provider through
standard ADO interfaces

C06619182.fm Page 193 Thursday, March 6, 2003 2:53 PM

194 Introducing Microsoft .NET, Third Edition

shown in Figure 6-3. Version 1.1 of the .NET Framework added an implemen-
tation of these objects customized for Oracle databases. Other data providers
can choose whether to write their own managed implementation of these
objects or whether to write an OLE DB interface and use the compatibility layer.

f06tp03Figure 6-3 ADO.NET architecture and objects.

The server provides an
ADO.NET DataSet object
containing the result of a
query.

ADO.NET provides its actual data in the form of a DataSet object, as
shown in Figure 6-4. DataSet is a .NET class that represents a collection of
data that results from one or more queries. It contains internal tables and pro-
vides methods that allow access to the tables’ rows and columns. It also con-
tains a schema describing its internal structure. A DataSet object can be
untyped (the default), in which case a client asks for items by specifying their
names in the form of coded strings. Alternatively, you can create a typed
DataSet object that contains member variables tied to each individual field,
which is easier to write good code for. Either type of DataSet object is com-
patible with .NET’s XML serialization capability described in Chapter 7. This
means that it knows how to convert itself into and out of XML so that it can
be transmitted across process or machine boundaries.

ADO.NET
standard objects

OLE DB
interfaces

.NET SQL Server
Provider classes

Implementation tailored to
SQL Server

.NET OLE DB
Provider classes

Bridge to any
OLE DB provider

Any OLE DB
provider

Client

Uses same code to
access any provider
through standard
ADO.NET objects

C06619182.fm Page 194 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 195

f06tp04Figure 6-4 The ADO.NET DataSet object.

Windows Forms and Web
Forms contain controls for
displaying DataSet
objects.

One of the main operations that programmers might want to do with a
DataSet object when they get one is to display its contents to the user. Both
Windows Forms (see Chapter 5) and Web Forms (see Chapter 3) contain con-
trols that know how to take a DataSet object and render its contents for dis-
play to humans.

If they need it for backward compatibility, .NET programs can still use
original ADO via the COM compatibility feature discussed in Chapter 2.

This chapter provides the briefest glimpse into the features in ADO.NET.
Like Windows Forms, in fact, and like every chapter of this book, ADO.NET
needs a book of its own. Microsoft Press has published Microsoft ADO.NET
(Core Reference), by David Sceppa, in May 2002 and Building Web Solutions
with ASP.NET and ADO.NET, by Dino Esposito (February 2002).

Simplest Example
An ADO.NET example
starts here.

As always, I started my exploration of ADO.NET with the simplest example I
could think of that demonstrated anything useful. You can find this sample pro-
gram on this book’s Web site, http://www.introducingmicrosoft.net. The appli-
cation is an ASP.NET page that performs a canned database query when you
request the page. It uses DataConnection and DataAdapter objects to request
all the entries in the Authors table in the pubs database in the Duwamish
Books sample program distributed with the .NET Framework SDK. The query
produces an ADO.NET DataSet object, which I display to the user in a Web
Forms DataGrid control on the Web page. The page itself is shown in Figure
6-5 and the sample code in Listing 6-1.

DataColumns

DataRows

DataTable 1

DataSet

Other
DataTables...

Schema

C06619182.fm Page 195 Thursday, March 6, 2003 2:53 PM

196 Introducing Microsoft .NET, Third Edition

f06tp05Figure 6-5 Web page from the simplest ADO.NET sample.

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles MyBase.Load

’ Create Connection object containing connection string

Dim Connection As New _
SqlConnection(“server=(local);uid=sa;pwd=‘‘;database=pubs”)

’ Create DataAdapter object containing query string

Dim Adapter As New _
SqlDataAdapter(“select * from Authors", Connection)

’ Create new empty DataSet object

Dim DS = New DataSet()

’ Fill DataSet object with results of query

Adapter.Fill(DS, “Authors”)

’ Place data set into DataGrid control for user to look at

DataGrid1().DataSource = DS.Tables(“Authors”).DefaultView

’ Tell DataGrid control to display its contents

Listing 6-1 The Page_Load event handler of the simplest ADO.NET sample.

C06619182.fm Page 196 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 197

DataGrid1().DataBind()

’ Clean up database connection

Connection.Close()

End Sub

When the user requests the page in her browser, the request comes to
Internet Information Services (IIS) and ASP.NET, which fires the Page_Load
event on the page as part of the rendering process. All the interesting code in
this example lives in the handler for this event.

You first create an
ADO.NET Connection
object representing the
connection to your data-
base.

The first thing we have to do is create the Connection object. This object
represents the opening in the database program through which requests flow
in and data flows out, roughly analogous to the Ethernet jack on your office
wall. ADO.NET provides two different common language runtime classes that
we can use for our database connection. The class System.Data.SqlClient.Sql-
Connection, which I use in this example, is optimized to work only with
Mic roso f t SQL Se rve r. ADO.NET a l so p rov ides the c l a s s Sy s -
tem.Data.OleDb.OleDbConnection, which is a generic Connection object that
works with any OLE DB data provider, including SQL Server. Except for the
names of the object classes and some slight differences in the connection
string, the generic Connection object works the same from a client perspec-
tive as the dedicated SQL Server interface. Obviously, writing two different
sets of data access objects was more work for Microsoft, but Microsoft prob-
ably figured that doing so was worth the effort to make SQL Server work bet-
ter than generic databases, and they were probably right. I use the SQL-
specific classes in this book.

In the constructor of the SqlConnection object, we pass it the connec-
tion string that we use to connect to the database, containing such items as
the data provider’s name and location, the database inside the provider to
use, and the user ID and password that we use to connect to it. The values in
this string are the same as they were in standard, pre-.NET ADO.

You next create a Data-
Adapter object, which
uses the Connection
object to make calls into
the database.

Having created the Connection object, we now need to create the Data-
Adapter object, which mediates between the Connection object and the client
application. Think of the DataAdapter object as the Ethernet card in your PC.
Programs talk to the network card (the DataAdapter object), which in turn
talks to the jack on the wall (the Connection object). Your client program
issues commands to the DataAdapter object, which transmits them to the
database through the Connection object and then accepts the results from the
Connection object and returns them to your client program. In the Data-
Adapter class constructor, we pass it the command that we want it to execute
in the database—in this case selecting all the entries from a table of authors—

C06619182.fm Page 197 Thursday, March 6, 2003 2:53 PM

198 Introducing Microsoft .NET, Third Edition

and the Connection object for it to use in making that query. ADO.NET
provides two DataAdapter classes, which are System.Data.OleDb.OleDb-
DataAdapter and System.Data.SqlClient.SqlDataAdapter. As was the case
with Connection objects, the former is a generic class that works with any
OLE DB–compliant data source, and the latter is optimized to work with
SQL Server.

You create an empty
DataSet object and use
the DataAdapter object to
fill it with data.

Now that we have our DataAdapter object, we want to use it to query
the database and fetch some data for us to make money with. ADO.NET pro-
vides the class System.Data.DataSet as the fundamental holder for all types of
data. A DataSet object contains its own internal tables that will contain the
results of the queries that we will make on the data provider through the
DataAdapter object and the Connection object. We start by creating an object
of this class, which is empty when we first create it. We fill the DataSet object
with data by calling the DataAdapter object’s Fill method, passing the
DataSet object itself and the name of the table inside the DataSet object that
we want the data to live in. If, as in this case, the table doesn’t currently exist
in the DataSet object, it will be created as a result of this call. The table name
need not match the table in the underlying database, as the name is used only
within the DataSet object by client programs.

Once I have the data set, I
use a DataGrid control to
easily display it to the
user.

Once I have my DataSet object filled, I want to display its contents to
the user. I do this by placing it into a DataGrid control, a Web Forms control
developed expressly for this purpose. The control lives on an .aspx page, and
it knows how to eat a DataSet object and render its contents into HTML for
display to the user. I tell it which DataSet object to eat by setting its Data-
Source property to the DataSet object I just got from my query. I then tell the
control “make it so” by calling its DataBind method.

It’s a good idea to explic-
itly close the database
connection.

Finally, when I am finished with the database connection, it’s a good
idea to explicitly close it by using the Connection object’s Close method. If I
simply let the Connection object go out of scope, the object wouldn’t be final-
ized and the underlying database connection that it wraps wouldn’t be freed
until the next garbage collection, whenever that is. Database connections are
scarce resources, and I’d like to recover them as soon as possible. Therefore
I call the Close method to tell the Connection object that I am finished with
the database connection so that it should reclaim those resources. Enforcing
this determinism in a garbage-collected memory management environment is
obviously slightly harder to code, and therefore slightly easier to mess up,
than was the automatic reference counting scheme used in Visual Basic 6.0,
which would have released the Connection object immediately. However,
garbage collection makes it impossible for you to permanently leak away
resources, which reference counting allowed in certain cases. See my discus-
sion of garbage collection in Chapter 2 for more details about the benefits of
foolproofness vs. easy determinism.

C06619182.fm Page 198 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 199

This example required
very little code.

This simple example required very little code, but it illustrates important
concepts of ADO.NET and also demonstrates that it doesn’t take a lot of pro-
gramming to get a lot of stuff done.

Tips from the Trenches
One of the best ways to improve the performance of database
applications is by pooling database connections. ADO.NET auto-
matically provides this service by default. The first time a client cre-
ates a Connection object, it really is created. When the client calls
Close or Dispose on this object, rather than shredding it, the pool-
ing manager puts it into a pool that it maintains until the client
application’s process is terminated. Subsequent creations of a con-
nection with the same connection string parameters cause the
object to be fetched from the pool; a new object is not created.
You can modify the behavior of the connection pool—for exam-
ple, its maximum and minimum number of connections—by mak-
ing entries in the connection string. Generally, however, the
default behaviors (pooling enabled, minimum of zero objects,
maximum of 100) give you good performance with no develop-
ment effort. Still, for proper operation of the pool, you must
remember to call Close or Dispose on your Connection object, as
this example does. This would be a very good application of a try-
finally block, as described in Chapter 2.

More Complex Example: Disconnected Operation
The previous example is very simple, therefore it only scratches the surface. It
doesn’t show your own code reading data from a DataSet object; it doesn’t
show marshaling data across machine boundaries with XML; and it doesn’t
show disconnected operations, such as making changes to data and posting
them back. So I’ve written a different sample, whose operation is shown in
Figure 6-6, to demonstrate these features. Instead of using a browser to display
data, I wrote a rich client using Windows Forms (see Chapter 5). The client
uses an XML Web service (see Chapter 4) to fetch a data set from the server
machine. The client allows a user to edit the results of the query and post the
changes back to the underlying database through the XML Web service.

C06619182.fm Page 199 Thursday, March 6, 2003 2:53 PM

200 Introducing Microsoft .NET, Third Edition

f06tp06Figure 6-6 Operation of the DataSet sample program.

A sample showing discon-
nected operations starts
here.

On the server, I’ve written a simple XML Web service that exposes the
methods GetAuthors and UpdateAuthors. The first method’s code is shown in
Listing 6-2, and it’s really quite simple.

<WebMethod()> Public Function GetAuthors() As Data.DataSet

’ Create Connection object

Dim Connection As SqlConnection
Connection = New _

SqlConnection(“server=(local);uid=sa;pwd=‘‘;database=pubs”)

’ Create DataAdapter object

Dim Adapter As SqlDataAdapter
Adapter = New _

SqlDataAdapter(“select * from Authors", Connection)

’ Create empty DataSet object
Dim DS As Data.DataSet
DS = New Data.DataSet()

’ Fill DataSet object with data

Adapter.Fill(DS, “Authors”)

’ Return DataSet object to caller

Return DS

End Function

Listing 6-2 The GetAuthors method.

Client browser

 1. Calls GetAuthors

 3. Edits DataSet

 4. Passes DataSet
containing changed
records to Up dateAuthors

XML Web service

 2. Per forms que ry,
re turns Da taSet

 5. Saves changes
in SQL Serv er

SQL Server

C06619182.fm Page 200 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 201

The XML Web service
method simply returns a
DataSet object, which
causes it to be transmit-
ted in XML.

When the client calls GetAuthors, the method creates a Connection
object and a DataAdapter object and uses these to create a DataSet object, as
shown in the previous example. I could easily have added additional param-
eters for the client to pass to the XML Web service that the service could use
in performing the query—say, authors whose first name is “John”—but I
didn’t want to complicate the example. The difference between this example
and the previous one is that, instead of displaying the data set on a Web page
for a human user, the XML Web service returns the DataSet object to the client
program that calls it. This causes the DataSet object to be serialized into XML
and transmitted over the wire to the client. You can see the DataSet object
layout in XML by using the XML Web service’s built-in test capability, as
shown in Figure 6-7.

f06tp07Figure 6-7 The XML layout for the DataSet object.

You can run the XML Web service through the sample client app. When
the user clicks the Fill button, the app fetches the data set containing all the
authors from the XML Web service, as shown in Figure 6-8. The code is
shown in Listing 6-3.

C06619182.fm Page 201 Thursday, March 6, 2003 2:53 PM

202 Introducing Microsoft .NET, Third Edition

f06tp08Figure 6-8 Our sample client application.

Dim MyDataSet As DataSet

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button1.Click

ListBox1.Items.Clear()

’ Create proxy object for accessing Web service

Dim Server As New localhost.Service1()

’ Fetch DataSet object from proxy

MyDataSet = Server.GetAuthors

’ Populate initial list box with author’s names

Dim ThisAuthorRow As DataRow

For Each ThisAuthorRow In MyDataSet.Tables(“Authors”).Rows

’ Create my object that holds the author’s name and
’ the author’s data row

Dim ThisGuy As New MyOwnListItem(ThisAuthorRow(“au_lname”) + _
 “, “ + ThisAuthorRow(“au_fname”), ThisAuthorRow)

ListBox1.Items.Add(ThisGuy)
Next

End Sub

Listing 6-3 Code from the application.

C06619182.fm Page 202 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 203

The client automatically
rehydrates the XML into a
DataSet object.

The client creates an object of the XML Web service class and calls the
GetAuthors method, which returns the DataSet object as I’ve just described.
When the client assigns this return value to a variable, it takes the XML stream
sent by the server and rehydrates it into a functioning DataSet object. The
DataSet object has been transmitted using XML and HTTP, which clearly illus-
trates the fact that it can be sent to any type of client, even a non-Microsoft
system.

The DataSet object
contains .NET properties
representing tables and
rows.

Once I’ve gotten the DataSet object from server to client, I want to
access it on the client side. I fetch the table in the DataSet object that I know
contains the records of authors by using the DataSet object’s Tables collec-
tion, passing the name of the table that I want to access, in this case Authors.
This call returns an object of class System.Data.DataTable. This table contains
the author records that I want, each represented by an object called Sys-
tem.Data.DataRow. I step through each record sequentially by accessing the
collection called Rows in the DataTable object.

You access an individual
column through its name
in a DataRow object.

I’d like to get each author’s first name and last name, assemble them into
a string, and display the string in the ListBox control. Getting the data from
the DataSet object is easy. Each DataRow object contains a collection of col-
umns that represent the fields in the database that actually contain individual
values. I access a column by using its name, in this case au_lname and
au_fname, as shown at the end of the code listing in Listing 6-3.

ListBox controls now
require a .NET object
because the ItemData
property has been
removed.

Since I want to enable the user to edit the DataRow later, I need to asso-
ciate a DataRow with its line in the ListBox control. In Visual Basic 6.0, I’d
have used the ListBox control’s ItemData property to hold an integer key
identifying the row in a separate collection I’d have to somehow manage. But
I can’t do that in .NET because the ItemData property has been removed.
Instead, the ListBox control can hold a .NET object of any class, but it won’t
hold two separate items (the string and the key) as it did before. The ListBox
control displays the string returned by the object’s ToString method
(described in Chapter 2). So to make this app work the way I wanted, I
needed to roll my own class that contained all the information I wanted for
each line of the ListBox control to hold. You’ll find that information in the
class MyOwnListItem. It holds a DataRow object and a string, both of which
it accepts in its constructor. The code is shown in Listing 6-4. It sounds com-
plicated, but it really isn’t. It saves me having to manage my own collection of
ListBox items, which is a net gain even if you use it in only one place. For
each row, I create an object of this class, passing it the full name string I want
to display in the ListBox control and the corresponding DataRow object.

C06619182.fm Page 203 Thursday, March 6, 2003 2:53 PM

204 Introducing Microsoft .NET, Third Edition

Public Class MyOwnListItem

Public m_FullName As String
Public m_DataRow As Data.DataRow

’ Class constructor that accepts a name for display and a DataRow
’ to hold

Public Sub New(ByVal FullName As String, _
ByVal MyDataRow As Data.DataRow)

m_FullName = FullName
m_DataRow = MyDataRow

End Sub

’ Override System.Object.ToString. The displaying ListBox control
’ will call this method to get the string to display

Public Overrides Function ToString() As String
Return m_FullName

End Function

End Class

Listing 6-4 Code from my own class MyOwnListItem.

Now I want to edit an individual entry. When the user selects an entry
from the ListBox and clicks Edit, I pop up a dialog box showing the status
of that author’s contract, as shown in Figure 6-9. You can see the code in
Listing 6-5.

f06tp09Figure 6-9 The Edit Author’s Info dialog box.

C06619182.fm Page 204 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 205

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles Button2.Click

’ Get selected author’s data row from ListBox control

Dim SelectedListItem As MyOwnListItem
SelectedListItem = ListBox1.Items(ListBox1.SelectedIndex)

Dim AuthorsDataRow As Data.DataRow
AuthorsDataRow = SelectedListItem.m_DataRow

’ Get state of author’s contract from data row

Dim contract As Boolean
contract = AuthorsDataRow(“contract”)

’ Set control in editing form according to current state
’ of author’s contract

Dim EditForm As New Form2()
EditForm.CheckBox1.Checked = contract

’ Set editing form’s text and show to user.
’ If user clicked OK, then change value in data row
’ and enable Update button

If (EditForm.ShowDialog() = DialogResult.OK) Then
AuthorsDataRow(“contract”) = EditForm.CheckBox1.Checked
Button3.Enabled = True

End If

End Sub

Listing 6-5 Code allowing editing of author info.

You read and write col-
umns in the DataRow
object as if they were
simple variables.

I first fetch the DataRow object representing the user’s selection from
the ListBox. (See how much easier it is than a separate collection?) I look at
the DataRow object’s contract column and set the dialog box’s CheckBox
control to the column’s value. If the user clicks OK, I fetch the state of the
CheckBox control from the dialog box and set the value in the DataRow
object’s contract column. You can see that I’m simply treating the contract
column of a row like a standard variable.

You can easily select only
the changed rows to be
sent back to the server for
updating.

When the user clicks Update, I need to send whatever changes he’s
made back to the server to update the server’s master database tables. I could
send the entire data set back to the server and let the server figure out which
rows have changed, but this would be a waste of network bandwidth. It

C06619182.fm Page 205 Thursday, March 6, 2003 2:53 PM

206 Introducing Microsoft .NET, Third Edition

would be better to send only the changed rows. I can easily do this by using
the method DataSet.GetChanges, which returns another DataSet object con-
taining only the rows in the original data set to which changes have been
made. I send this DataSet object back to the XML Web service using the ser-
vice’s UpdateAuthors method. You can see the code for UpdateAuthors in
Listing 6-6.

<WebMethod()> Public Function UpdateAuthors(_
ByVal ChangedItemsDS As System.Data.DataSet) As Integer

’ Create new Connection object

Dim Connection As SqlConnection
Connection = New _

SqlConnection(“server=(local);uid=sa;pwd=‘‘;database=pubs”)

’ Create DataAdapter object

Dim Adapter As SqlDataAdapter
Adapter = New SqlDataAdapter()

’ Create and set properties of Command object

Dim MyUpdateCommand As New _
Data.SqlClient.SqlCommand(_
 “UPDATE Authors SET contract = @contract WHERE au_id = @au_id", _
Connection)

Adapter.UpdateCommand = MyUpdateCommand
Adapter.UpdateCommand.Parameters.Add(“@contract", SqlDbType.Bit, _

1, “contract”)
Adapter.UpdateCommand.Parameters.Add(“@au_id", SqlDbType.VarChar, _

11, “au_id”)

’ Send update command to database via DataAdapter object,
’ specifying the changed records DataSet object.
’ The Update method returns an integer, which we return to
’ the client

Return Adapter.Update(ChangedItemsDS, “Authors”)

End Function

Listing 6-6 Updating author information.

The DataAdapter object
uses a Command object
to make changes to the
underlying database.

On the server side, my XML Web service catches the incoming DataSet
object containing changes that the client has made. It creates a Connection
object and a DataAdapter object as before. In this case, we are going to be
updating data that’s already in the database, so we also need a Command

C06619182.fm Page 206 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 207

object, which represents a command that you use to tell the database to do
something. The common language runtime provides two classes of Command
object, System.Data.OleDb.OleDbCommand, which is the generic Command
object available to any OLE DB provider, and System.Data.SqlClient.Sql-
Command, which is the version specific to SQL Server. You create one of
these objects as shown, passing in its constructor the SQL string that you want
executed. You then plug the Command object into the DataAdapter object by
assigning it to the DataAdapter object’s UpdateCommand property. This
assignment tells the DataAdapter object which SQL command to run when
data is updated. You’ll see that I also have to add parameter objects to tell the
command which variables map to which columns. (The DataAdapter object
also contains InsertCommand and DeleteCommand properties, which accept
a similar Command object used during inserts and deletes, respectively, but I
don’t use these properties in this example.) Finally, I call the DataAdapter
object’s Update method, telling it to take the update command and run it
against the database, using the DataSet object that I received from the client.
This call returns the number of rows updated, which I return to the client.

Design of databases used
by ADO.NET needs to
take into account its
loosely coupled nature.

The loosely coupled nature of ADO.NET DataSet objects requires careful
thought in database design. Since you don’t know how long a client is going
to keep a DataSet object, you can’t afford to keep locks on all your data to
prevent conflicts; you’d tie the system into knots very quickly. Instead, you
can design your database to use some form of optimistic concurrency. If I had
done that, my sample XML Web service would contain code that would check
before saving updates to see whether the data it is saving had been changed
by someone else in the interim—for example, by checking a timestamp col-
umn. If the data had been changed, the unsaved, edited values might be bad,
so the XML Web service would throw an error back to the client, and the client
would somehow inform the user of this and make the user do it again. We call
this type of concurrency optimistic because we’re hoping that this somewhat
painful process won’t happen very often. This approach works well in sys-
tems that experience low contention rates. For higher contention systems,
such as buying tickets online to the latest Harry Belafonte concert (he’s still
got his stuff, by the way, even at age 76), you might use compensating trans-
actions—remove a specific pair of tickets from the theater database when the
user first asks what’s available and then perform the opposite operation to put
the tickets back in the pool if the user doesn’t buy them within ten minutes.

C06619182.fm Page 207 Thursday, March 6, 2003 2:53 PM

208 Introducing Microsoft .NET, Third Edition

Tips from the Trenches
Most developers I know don’t like optimistic concurrency, but it
can be very efficient if you do it right. The key is to ruthlessly pare
away the potential situations in which contention can arise, which
this example doesn’t even try to do. For example, a production
app might again request the data record for an author when the
user opens the editing dialog box to work on that author so that
the user would be looking at the latest data. The app might auto-
matically save the record back to the database when the user clicks
OK so that the changes can be reflected immediately. These strat-
egies greatly reduce the amount of time during which two users
might be messing each other up. If your contention is low, it’s the
way to go.

Visual Studio Support and Typed DataSet Objects
Visual Studio provides
good editor support for
writing data applications.

In the two previous examples, I’ve written my own code for creating the var-
ious objects that I’ve needed for my data operations, such as the Connection
and the Adapter. I’ve also had to write code for setting their properties, such
as the connection string parameters in the Connection object and the query
string parameters in the Adapter object. As any developer who’s struggled
with connection strings knows, this can become painful. I don’t usually have
to write code that creates buttons on a form or sets their properties; instead,
Visual Studio provides an editor that generates that code for me and saves me
lots of time. I’d really like some of that support for writing my database oper-
ation code, and Visual Studio gives it to me.

Working with standard
DataSet objects could
use some development
time support.

Besides the Connection and Adapter objects, I’d also like some help
with DataSets. Working with a DataSet object as shown in the previous exam-
ple is useful, but it’s still somewhat unwieldy because you have to plug in
strings to specify the names of tables and columns. Some programming cases
require this flexibility, such as a generic data browsing tool that allows a
human user to type in any sort of query that occurs to him. But the majority
of data access programs perform the same operations on the same data
sources over and over and over again—think of the concert ticket application,
for example. In cases like these, it doesn’t make sense to require the pro-
grammer to pass a string name to identify a table or column. The programmer

C06619182.fm Page 208 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 209

has to look up the name in a manual so that she knows which one to use and
then make sure she types it in correctly every time—that she hasn’t trans-
posed a key and typed “Auhtors,” for example. Mistakes like this are easy to
make because raw DataSets don’t have development-time support to make
sure that you type in the correct string. They are also difficult to debug
because your eye isn’t good at picking out close misspellings. It may not
sound like a terrible problem, but if we could prevent it, we’d save some pro-
grammer time, some testing time, and probably some service calls. If you
don’t want those savings, send yours to me, OK?

We want a dedicated
DataSet class tailored to
the results of a specific
data operation.

What we’d really like is a DataSet object that’s tailored to the particular
data that we expect to receive from a specific operation. It would have table
and column names already wired into it as hard-coded variables. It would
allow IntelliSense to show these names during programming so that we
wouldn’t have to reach for the paper manual. We wouldn’t have to worry
about misspellings because the compiler would catch us if we somehow
ignored IntelliSense and got a name wrong. And we’d like good development
tool support for generating them.

It turns out that all of our wishes have been granted by .NET and Visual
Studio. Now that we’ve seen the nuts and bolts of ADO.NET, I’ll show you the
tools that make it easier. I’ve written a sample program that demonstrates it.

A database programming
example demonstrating
intelligent tool support
starts here.

Visual Studio .NET supports developers writing data applications by
providing its Server Explorer, shown in Figure 6-10. Server Explorer shows
the various elements on a server for which it can generate .NET wrapper class
objects, such as message queues and performance counters. The most inter-
esting part of Server Explorer for our purposes is that it allows us to see the
contents of our local SQL Server installation down to the table level. (It will
actually go down to the individual column level, but I’m not using that for this
example.)

C06619182.fm Page 209 Thursday, March 6, 2003 2:53 PM

210 Introducing Microsoft .NET, Third Edition

f06tp10Figure 6-10 Server Explorer within the Visual Studio .NET environment.

Server Explorer in Visual
Studio will automatically
generate the correct
SqlConnection and
SqlDataAdapter objects
for accessing a database.

When I click on a table (in this case, authors) and drag it onto my
design surface, Visual Studio generates SqlConnection and SqlDataAdapter
objects and sets their parameters to the proper values for accessing the
selected table. For example, the SqlDataAdapter is set to use the created con-
nection, and has appropriate SQL commands added, as shown in Figure 6-11.
As with all objects generated by Visual Studio, the code for creating them is
placed in the InitializeComponent method of the container, in this case my
XML Web service. I haven’t gained any run-time performance advantage by
setting up my connection and adapter objects this way. In fact, I’ve probably
lost a little because Visual Studio generates the Insert and Delete commands
that this example doesn’t use. But it saves a whole lot of developer time and
prevents errors, which means it’s usually a good trade-off. And I could man-
ually remove the unneeded pieces if I really cared.

C06619182.fm Page 210 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 211

f06tp11Figure 6-11 SQLDataAdapter object properties.

Tips from the Trenches
My clients report that the overhead of creating the unneeded
pieces within these objects is not very high. It doesn’t perform any
external communication with the database, it’s just allocating local
memory and setting its values. Especially when used in conjunc-
tion with an XML Web Service as shown, there’s so much other
stuff happening that this overhead gets lost in the noise. However,
if you find that it’s taking more time than you can afford, you will
probably still find it handy to use the designer to generate the code
and then remove or modify the pieces that you don’t care about in
any particular method.

ADO.NET supports typed
DataSet classes.

Now that I have my connection and adapter set up nicely, it’s time to do
something about my DataSet. ADO.NET provides the typed DataSet class.
This is a custom class, derived from System.Data.DataSet, that provides
named member variables for each specific table, row, and column. If we
know at programming time which tables and columns a data set will contain,
we can use utility programs to generate a typed DataSet class. This feature
might not sound like a big deal, and I didn’t think it would matter much until
I tried it, but now I’m hooked. As long as you know during program devel-
opment which data queries you are going to want to make, and you usually

C06619182.fm Page 211 Thursday, March 6, 2003 2:53 PM

212 Introducing Microsoft .NET, Third Edition

will, you won’t want to program any other way. I’ve rewritten the authors cli-
ent example from the previous section to use a typed DataSet object. This
approach was easy to generate and made my programming somewhat easier
to accomplish and somewhat harder to get wrong. The cost is a small amount
of extra code, which you don’t have to write, in your application. Any time
you can trade off larger code size for faster and better programming, you
don’t have an economic choice.

You generate a typed
DataSet class using
Visual Studio’s wizards.

You generate a typed DataSet by selecting Generate Dataset from the
Data menu of Visual Studio’s main menu. (You can also generate it with the
command-line utility XSD.exe, which requires an XML schema that describes
your data set.) Visual Studio pops up the dialog box shown in Figure 6-12,
asking for the name of the new class and the table that you want it to match.
You make your selections and Visual Studio generates the code for the new
class. In Class View, shown in Figure 6-13, you can see that the new class
contains strongly typed classes to represent the table (authorsDataTable) and
the row within the table (authorsRow).

f06tp12Figure 6-12 Generating a DataSet in Visual Studio .NET.

C06619182.fm Page 212 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 213

f06tp13Figure 6-13 Class View showing strongly typed classes.

Writing the database
access code is much
easier with the objects
that Visual Studio has
created.

I rewrote my XML Web service to take advantage of the new objects that
it contains. Listing 6-7 shows the code of my XML Web service method. It’s
much simpler because the connection, adapter, and typed data set have
already been created. In my GetAuthors method, I simply tell the adapter to
fill the data set and then return it. In my UpdateAuthors method, I simply tell
the adapter to update the database with the new information. Again, I’m not
saving any CPU cycles here; the objects are still being created exactly as if I
had written the code myself, but I had to write much less code. When either
method returns, ASP.NET automatically calls Dispose on the XML Web service
object, which automatically disposes of all its components, including the con-
nection and adapter.

<WebMethod()> Public Function GetAuthors() As AuthorsTypedDataSet

’ Connection, adapter, and dataset objects have been
’ added by designer instead of with our own code.

’ Fill DataSet object with data

Me.SqlDataAdapter1.Fill(Me.AuthorsTypedDataSet1)

’ Return DataSet object to caller

Return Me.AuthorsTypedDataSet1

Listing 6-7 XML Web service sample code for getting and updating author information.

C06619182.fm Page 213 Thursday, March 6, 2003 2:53 PM

214 Introducing Microsoft .NET, Third Edition

End Function

<WebMethod()> Public Function UpdateAuthors(ByVal ChangedItemsDS _
As System.Data.DataSet) As Integer

’ Connection, adapter, and dataset objects have been
’ added by designer instead of with our own code.

’ Call Update method on adapter, which makes updates in records

Return Me.SqlDataAdapter1.Update(ChangedItemsDS)

End Function

Writing the client code is
much easier with the
typed data set.

The client code, shown in Listing 6-8, is very similar to the previous
example. You can see that instead of saying MyDataSet .Tables
(“Authors”).Rows, I say MyDataSet.authors. To fetch an individual value, I say
ThisAuthorRow.au_lname instead of ThisAuthorRow(“au_lname”). These
differences may not sound like much, but they remove a common source of
errors (misspelling the string) and save programmer time by allowing Intel-
liSense support, as shown in Figure 6-14. If you still don’t think it sounds use-
ful, try using it for an hour and then give it up. You’ll change your mind very
quickly. The rest of the sample gets similarly easier. If you know your query
set at development time, you do not have an economic choice.

Dim MyDataSet As localhost.AuthorsTypedDataSet

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles Button1.Click

ListBox1.Items.Clear()

’ Create proxy object for accessing Web Service

Dim Server As New localhost.Service1()

’ Fetch DataSet object from proxy

MyDataSet = Server.GetAuthors

’ Populate initial list box with author’s names

Listing 6-8 Client code for typed XML Web service sample.

C06619182.fm Page 214 Thursday, March 6, 2003 2:53 PM

Chapter 6 Data Access in .NET 215

Dim ThisAuthorRow As localhost.AuthorsTypedDataSet.authorsRow

For Each ThisAuthorRow In MyDataSet.authors

’ Create my object that holds the authors name and
’ the author’s data row

Dim ThisGuy As New MyOwnListItem(ThisAuthorRow.au_lname + _
 “, “ + ThisAuthorRow.au_fname, ThisAuthorRow)

ListBox1.Items.Add(ThisGuy)
Next

End Sub

f06tp14Figure 6-14 IntelliSense support in Visual Studio.

C06619182.fm Page 215 Thursday, March 6, 2003 2:53 PM

C06619182.fm Page 216 Thursday, March 6, 2003 2:53 PM

